
Software Testing Report
Team 4 - Undercooked

Fin Cochrane
Sehran Ahmed
Sam Davis

Hamza Salman
Owen Thomas
Zhenyi Xu



Testing Methods
Our testing included both dynamic and static methods to verify the overall functionality of our
code. We used unit tests in IntelliJ using JUnit for the dynamic tests, and used these to
check the actual code was functioning as intended, which is a necessary part of any project.
To test whether the game would “feel” functional, we used static tests that involved an
expected outcome while playing the game and an actual outcome, along with any tests that
weren’t able to be implemented using unit tests.

Test Report

Important Dynamic Tests

Test ID Description Expected Result Actual Result Conclusion/ Actions
Needed

DTEST_AU
DIO_MANA
GER_INIT

Initialise the
AudioManager
without crashing,
with the correct
default sounds.

No crashes, and default
assets are loaded.

Same as expected
results. Though the
default sounds should
not be any sound
used in normal
gameplay.

Replaced the default
sound with a unique
silent sound, so the
user is not disrupted
during regular
gameplay when default
sound is used.

DTEST_AU
DIO_MANA
GER_UPDA
TE_VOLUM
E

Change the
volume of sound
and music
loaded into the
AudioManager.

The volume values for all
sound and music assets
should change to the
specified values.

They did not change. Had to redesign the
test as it was not
representative of
runtime. The changed
test correctly reflected
updates to volume in
sound and music.

DTEST_TEX
TURE_MAN
AGER_INIT

Initialise the
texture manager
without crashing,
and load the
default texture.

No crashes, and default
assets are loaded.

Same as expected. N/A

DTEST_AU
DIO_SETTI
NGS_LISTE
NERS

Set the music
volume, game
volume settings
and save them
using listeners.

The listeners should set
their repsective values for
the Audio Settings and
then the values should be
saved to a settings.json
file.

Same as expected. N/A

DTEST_AU
DIO_SLIDE
RS_SLIDER

Ensure that the
slider can be
correctly moved
within bounds.

The slider should be able
to update its properties to
reflect the slide of its slider,
but not allow sliding
beyond its minimum
maximum.

Same as expected. N/A



DTEST_ENT
ITY_INIT

Load the entity
texture and
sprite, as well as
default values for
its properties like
position.

All properties should have
default values, except the
texture and sprite, which
should be updated with the
correct texture.

Same as expected. N/A

DTEST_ENT
ITY_COLLID
ING

Detect if 2
entities collide
properly.

Should not allow collision
with entities of no width/
height. But should
otherwise collide if the
entities’ hitboxes’ overlap.

Did not detect
collision when it
should have.

A simple typo, where
updating the width via
the setter updated the
height instead of width,
preventing width being
set to a value above 0,
was fixed.

DTEST_MO
VEABLEEN
TITY_MOVE

Can moveable
entities move
correctly?

Using the move function
correctly moves the entities
the correct distance.

Same as expected. N/A

DTEST_FIL
ECONTROL
_SAVE_LOA
D_DATA

Use the
FileControl class
to save and load
data easily

Should save text and json
data appropriately without
crashing, and load the data
back too.

Same as expected. N/A

DTEST_INS
TRUCTION

Can instructions
load sprites, be
serialised and
deserialised.

Instructions should
initiialise without crashing,
and save and be loaded
from a json file.

Same as expected. N/A

DTEST_ITE
MSTACK

Item stack
should have all
functionalities the
stack memory
structure does,
with the Item
class.

Should work like a regular
stack memory structure,
but with Items.

Same as expected. N/A

Here’s a screenshot of the overview stats for all the unit testing:

Note: https://github.com/TomGrill/gdx-testing was used to run our unit tests.
For the full statistics and information on our testing, you can use the following link:
https://htmlpreview.github.io/?https://raw.githubusercontent.com/undercooked-team/Piazza-P
anic-UnderCooked/main/tests/build/reports/tests/test/index.html

https://github.com/TomGrill/gdx-testing
https://htmlpreview.github.io/?https://raw.githubusercontent.com/undercooked-team/Piazza-Panic-UnderCooked/main/tests/build/reports/tests/test/index.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/undercooked-team/Piazza-Panic-UnderCooked/main/tests/build/reports/tests/test/index.html


No tests failed, and all implemented tests succeeded within reasonable time. However, the
full game has not been fully covered by unit tests, with only 15 out of 108 classes being
tested by unit tests. However, many of the other classes had functionalities similar to the
classes we did test. For example almost all the entity classes loaded textures in the same
way as Item.java, which was tested.
Also, many of the tests required user input to be fully tested, meaning static testing was used
to cover functionality of the classes that weren’t unit tested. For example the user interacting
with the map is better tested statically, as there many potential runtime errors, which unit
testing would not be very effective at picking up, eg. if the screen freezes, and the delta time
supplied to the game is larger than usual, due to lag, then it was possible for
characters/moveableEntities to clip out of the bounds of the map, by them moving more than
usual in a single frame.
So even though the test coverage via unit tests is low, the fairly similar methods across
classes and thorough static tests (using different people for testing, including members
outside our team, to play the game) more than make up for this unit test coverage deficit.

Static Tests

Test ID Description Desired Result Actual Result Conclusion/
Actions Needed

STEST_
MENU

Navigation across
the main menu
screens is clear and
easy

All buttons are clear as to
what they do, every
screen can be navigated
back to again

Sliders in audio
settings are unclear.
Otherwise result as
expected

Functional.
Audio sliders need
labelling

STEST_
DIFFICULTY

Scenario and
endless difficulties
are noticeably
different

Different difficulties are
noticeably more
challenging

Higher difficulties give
less time from
customers, increasing
the challenge

Fully functional

STEST_
MODES

Different scenario
and endless modes
noticeably change
gameplay

Modes introduce
noticeable changes in
gameplay

Modes change what
recipes must be
made, along with
more challenging
modes

Fully functional

STEST_
CONTROL

Controls work, make
sense, feel good to
use and can be
learnt quickly

Controls work and are
intuitive and can be
learnt easily

Controls are slightly
complicated but make
sense

Functional.
Controls could be
simplified but not
necessary

STEST_OOB Player should not be
able to get out of
bounds

Player should not be able
to get out of bounds

Player cannot get out
of bounds due to
collision

Fully functional

STEST_
CHEF

Currently selected
chef is clearly
displayed

Current chef is clearly
identifiable

Camera focuses on
current chef

Functional. Could
be more clear

STEST_ All player interactions Player should be able to Player can interact Fully functional



INTERACT work as intended interact with all
necessary stations, and
pick up and put down
items

with all necessary
stations, and pick up
and put down items

STEST_
CUSTOMER

Customer recipes
and time left are
clearly displayed

Customer recipes and
time left are clearly
displayed

Customer time is
displayed with bar,
recipe is displayed in
bottom left, overall
time is displayed at
top

Fully functional

STEST_
POWERUP

Powerup effects are
conveyed clearly

Powerup effects are
easily identified

Powerup sprite says
what it does on it in
text, different colours
for different powerups

Functional. Could
be improved to be
more visually
appealing

STEST_COLLE
CT_POWERUP

Powerups can be
collected

Powerups disappear and
have an effect on the
gameplay

Powerups disappear
and have an effect on
the gameplay

Fully functional

STEST_
STATION

The purpose of
stations is conveyed
clearly

Stations can be identified
easily

Stations are visually
distinct

Fully functional

STEST_
TUTORIAL

Tutorial is effective at
conveying necessary
information to the
player

Tutorial tells player what
they need to do

Tutorial mode
effectively teaches the
player how to play the
game. Additional help
is given for recipes
during actual
gameplay

Fully functional


