
Change Report
Team 4 - Undercooked

Fin Cochrane
Sehran Ahmed
Sam Davis

Hamza Salman
Owen Thomas
Zhenyi Xu



Changes
We started with a general idea of what needed to be done - the new requirements needed to
be implemented as part of the brief, and other changes made to the existing architecture of
the project. We used a github project board to keep track of these as milestones.

Less notable changes were kept track of primarily using detailed commit notes on github,
along with written notes on Discord during meetings. Any important changes were also
mentioned in the main Discord chat to ensure everyone was aware.

Changes were reviewed by other members of the team following major implementation
milestones, such as implementing a new feature.

Requirements
Extended from https://eng1-team3.github.io/project_eng1_team3/Req1.pdf

Given the requirements for the second assignment, we needed to update the requirements
table to include specific new requirements, and update existing entries to correspond with
the new brief.

Updates to existing entries
User Requirements

ID Description Priority

UR_NUMBER_OF_CUSTOMERS The game shall support varying numbers of
customers, chosen by the player

Shall

UR_COOKS The game shall let the player control 3 or more
cook characters, one at a time. Cooks should be
locked out for certain of time when they are used
up

Shall

UR_REPUTATION_POINTS The game shall have 3 reputation points that act as
lives for the player

Shall

Functional Requirements

ID Description User
Requirement

UR_PREPARE_STAGE The user needs to interact with a cooking
station during preparation. If they failed,
they will have to start the preparation from
the beginning

UR_RECIPES

Non-Functional Requirements
No updates were needed to existing entries as all existing non-functional requirements still
apply to the game with the new features.

https://eng1-team3.github.io/project_eng1_team3/Req1.pdf


New entries
User Requirements

ID Description Priority

UR_ENDLESS_MODE The game shall include a mode to play
forever until all reputation points are lost

Shall

UR_CUSTOMERS_AT_A_TIME The game shall increase the amount of
customers arriving at a time as the game
progresses, in the endless mode

Shall

UR_EARNINGS The game shall allow the user to earn money
by completing orders, and be able to buy
new cooks and stations with this money

Shall

UR_CUSTOMER_TIME_LIMIT The customers will each have a time limit to
be served before leaving.

Shall

UR_FAIL_PREPARATION The user will be able to fail a preparation
step, such as burning when frying.

Shall

UR_SAVEGAME The game shall include the ability to save
and load progress

Shall

UR_POWERUP The game shall have power ups that alter
gameplay

Shall

UR_DIFFICULTY The game shall have multiple difficulty
modes

Shall

Functional Requirements

ID Description User
Requirement

FR_PIZZA The system will allow the user to combine
specific ingredients to make a pizza

UR_RECIPES

FR_JACKET_POTATO The system will allow the user to combine
specific ingredients to make a jacket
potato

UR_RECIPES

FR_BAKING The system should be able to let users
use the baking station to bake ingredients
as part of the cooking process

UR_COOKING_
STATIONS

FR_PURCHASE The user can purchase more stations or
cooks with their money.

UR_EARNINGS

FR_EARN The user is rewarded with money upon
completing orders

UR_EARNINGS

FR_GAME_OVER When users have 0 remaining reputation
points the game will end in a game over

UR_REPUTATIO
N_POINTS



and update the leaderboard if in endless
mode.

FR_SAVE The system will be able to save status of
on screen items

UR_SAVEGAME

FR_LOAD The system will be able to load a saved
status

UR_SAVEGAME

FR_POWERUP Collectable power ups will alter the
gameplay

UR_POWERUP

FR_DIFFICULTY Different difficulties should make the
gameplay more challenging

UR_DIFFICULT
Y

Non-Functional Requirements
No updates were needed to existing entries.

Architecture
Extended from https://eng1-team3.github.io/project_eng1_team3/Arch1.pdf

Since we changed the architecture of the project quite a bit due to refactoring, the UML
diagrams had to be completely redone: Updated UMLs (too large to fit in one diagram)

Method Selection and Planning
Extended from https://eng1-team3.github.io/project_eng1_team3/Plan1.pdf

Methodology and Tools
We didn't follow an exact method to allow more flexibility within the team. The vague
timetable we followed was meeting on Wednesday, arranging tasks based on importance,
and organising other meetings when needed.

Discord was chosen for communication, as it provided us with voice chat for meetings and
the ability to share both text and images easily.
We used a GitHub repository branched from the original project for version control and
sharing code, along with hosting the website.
The main IDEs we used were IntelliJ and VScode.

Team Organisation
We began work on this part of the project by organising ourselves into two teams:
implementation and documentation. These were based on individual strength, and also
willingness to work on different parts. However these teams were still flexible, and members
could help with either one depending on what was needed.

Meetings were held on Wednesdays in person, and we would hold meetings whenever
needed over Discord. Individual tasks were assigned at the end of each meeting. Anything
important discussed in these meetings, such as code screenshots or tasks, was sent to the

https://eng1-team3.github.io/project_eng1_team3/Arch1.pdf
https://drive.google.com/drive/folders/157VhsHTF7usR5JbzTteS9lcA9UAVzdUO?usp=share_link
https://eng1-team3.github.io/project_eng1_team3/Plan1.pdf


Discord chat to keep track of and keep anyone unable to attend up to date with everyone
else.

Planning
Our initial plan involved splitting up each requirement to make it easier to keep track of.
While the requirements were updated, work was begun on implementation.
Upon beginning implementation, multiple issues were found that needed to be fixed before
we could work on implementing the new requirements. Refactoring the code was focused on
before moving onto requirements.

To begin with, our plan was to complete the code refactoring and as much of the
documentation as currently possible before the last meeting before term break on March
15th, but development wasn’t progressing as quick as expected. We then chose to push this
deadline back a few weeks until the end of the month, as this would still give us more than
enough time to work on the rest of the project. In the meantime, we assigned more people to
work on the code refactoring to speed up the process.

Progress on refactoring slowed due to the break, however it was largely completed on April
1st. We had a short discussion over messages on what to do next, and began implementing
the new requirements.

Following the break, we continued working on the implementation of new features, along
with starting development on the tests. New features were able to be implemented very
quickly due to the refactoring, and so further work on documentation could begin with the
implementation fully completed aside from tests.

We ended up a little short of time so we had to work much harder for the final few days
before the deadline to update the website and finish off work on everything else.

Gantt Charts
Created with Office Timeline Online
Initial gantt chart 1/3/2023

2nd gantt chart 15/03/2023

http://online.officetimeline.com


3rd gantt chart 12/04/2023

Final gantt chart 02/05/2023:

Risk Assessment
Extended from https://eng1-team3.github.io/project_eng1_team3/Risk1.pdf

https://eng1-team3.github.io/project_eng1_team3/Risk1.pdf


We felt that there was no need to change or add to the risk management document (aside
from changing those responsible for each risk to be members of our own team), as the
project itself is relatively low risk, and even with our updated requirements, the existing risk
register represents any possible risk. We did however make some preparations for possible
risks, for example, we communicated with team 3 to adapt problems brought by different
code styles.


