
Continuous Integration Report
Team 4 - Undercooked

Fin Cochrane
Sehran Ahmed
Sam Davis

Hamza Salman
Owen Thomas
Zhenyi Xu



A)
Continuous integration is the process of testing every successful build at every interval in a
project so any fault can be traced back and different parts of the project can fit in together.
We made sure to set up a branch with access to all participants where they could commit
any changes made and made tests to make sure that all the requirements were being met.
This allowed us to keep track of the progress being made and see which stage everyone
was working on. Using continuous integration allowed our project to flow smoothly without
major setbacks. We were able to work on different tasks and requirements at the same time
without the code conflicting since we were making commits after every change and testing
the project at every build. We were able to keep track of every single commit via Github
which meant if a requirement or a test had failed we could trace it back and see the changes
made at every step.
The pipelines used in our projects were as followed:

- We had a build pipeline which made sure that every time a commit was made Java
would build properly with no issues, any issues would be displayed on the console in
Github actions. When a commit was made Github would run the test provided with
Java CI Gradle to give us a successful build outcome. This pipeline would be
triggered by pushing a change on the Github repository.

- We also implemented a Jacoco test coverage pipeline which would attach a test
coverage to the build on every successful run which meant that we didn’t have to use
external tools to get test coverage. This report came attached with the build on
Github and was accessible for everyone to download as a zip file. This was also
generated automatically when a change or a commit was pushed.

- For testing and efficiency reasons we added binary artifacts to the build which made
a lib.jar executable file which was also accessible to all members of the group. This
executable file would download and run which meant after every successful build we
had a working product ready for testing, and if the build was unsuccessful it would list
the errors in the console instead of building the lib.jar executable which saved us
time in the long run.

- For consistency purposes we also added automated code style checks which made
our code reliable and consistent throughout. After every successful commit the code
would get tested for Google style coding and comments which made sense since we
were working in a large group meaning everyone had an easier time reading and
editing the code. This was also done at every commit and change being pushed onto
Github.

This allowed us to make the coding more efficient and optimal. We were also able to save a
lot of time as we were able to have more than one person on the coding. By having
continuous integration we were able to keep the code at a very high working standard
without worrying about conflicting code. Therefore by having multiple people on different
tasks we were able to combine the code at regular intervals making sure the all the
requirements were met without having to worry about integrating two sections of the game at
the end where it could cause multiple problems which would be hard to debug as there
would be no testing or record of where the problem(s) occurred and who was responsible for
it. This meant that we could have a better grasp of the progress made and we could clearly
see which areas needed work so everything was being updated accordingly.



B)
For the projects’ continuous integration infrastructure we chose Java CI with Gradle as it
provides some basic files and tests to start off with, which really helped us get started. This
tool also provides us with test pipelines after every successful test or build. We used Github
Actions to present the pipelines which helped us visualise the progress and obstacles of the
project. This meant that anyone could download the latest version from Github. Having test
coverage and builds meant that we could attach reports and binaries to builds as well which
allowed us to track every change.
To implement the pipelines the group used Github Actions with Java Gradle CI to build and
attach artifacts to the build. Each pipeline was set up as followed:

- The build pipeline was implemented as a simple Java Gradle YAML file which would
use build with Gradle and Java to test the build, we used JDK 11 as it seemed most
fit for our needs. This was the most basic pipeline to set up as it just required a
Gradle YAML file in the workflows folder.

- The Jacoco test coverage pipeline was implemented by adding Jacoco as a plugin in
the build.gradle file and by attaching the file as an artifact to the build by using steps
in the workflow YAML file. The path of the file was directed to the tests folder which
meant that after every successful build, Github Actions would allow the user to
download the test folder and the test coverage as an artifact.

- The binary pipeline and the executable lib.jar file was also implemented in the same
way, but since Gradle already made executable files we just had to attach it to the
build as an artifact using the workflow YAML file. We had to set the path in the
gradle.yml file where the executable was being made and Github Actions would
attach it to the build ready for download. The attachment would be implemented in
the file by just adding another step to the jobs section and the step would specify the
name, detail, and the path of the file.

- For the Automated code style check pipeline, we were required to implement a few
more steps such as importing Checkstyle: a tool provided by Java, as a plugin in the
build.gradle file and importing the rules as well so they could be followed by the code.
All of this was done by importing the plugin, defining the version; we used 10.4 as it
was the latest option at the time; and then applying the rules using the
‘com.puppycrawls.tool’ plugin. After all of this was implemented we had to attach it to
the build just like before, this was done in the same way by declaring the name,
description and the path in the gradle.yml file in the workflows folder.

After all of the implementation, we would get a build, after a successful commit, with test
coverage, an executable JAR build file and automated code style checks attached as
artifacts. This allowed us to have everything ready whenever a successful change was made
which helped the group stay on track and we had a ready product at hand all the time. This
method helped the group stay professional and organised.


