Architecture

Group 3
Assessment 1

Ben Howard <ph1219@york.ac.uk>
Cai Hughes <cabhS500@york.ac.uk>
Harry Richardson <hri040@york.ac.uk>
lvan Ndahiro <in597@york.ac.uk>
James Sutton <jis509@york.ac.uk>
Yuzhao Liu <yl5164@york.ac.uk>

Architecture - Group 3

Class structure diagram - Generated using PlantUML

"Full Resolution Image: https://drive.google.com/file/d/1gdHToT4J1ciCABP7xcGOS8B-CiJOluZ8/view?usp=sharing

Architecture - Group 3

PlantUML sequence diagram for player interactions

Cook | Gamescreen StationManager

1 Pass cook position =,

2 Check tilemap for interacted tile type >

3 Check current cook jtem stack / give cook item

4 Return item to be placed if needed <t

|EDDT| | Gamescreen I] StationManager

PlantUML sequence diagram for customer interactions

GameScreen | ‘ CustomerCaontraller ‘ ‘ Custamer |

>

1 'Wants to create customer

2 Create customer
i

P 3 Confirm Arrival

4 Serve customer

Y

5 Wants to remove custumer}

' 6 Remove customer

>

‘ Gamescreen ‘ CustamerCantroller | ‘ Customer
J

PlantUML Activity diagram for user input handling
Fes

A

|l CollactlUserinput 1
B

PlayerinputType pEybury

s s ~

| Check Ul interaction | Check game interaction |
o - h ry

s
"l

(pdate L a:cnrdingl?w (Lpdate game accurdinglyw
LS e LS =

| A |

Architecture - Group 3

PlantUML state diagram for gamewindow + PlantUML state diagram for gameplay state

|

:

‘| anuguos .|
o
-

s

SHanGame

o i e QI Dution

L
Wil

sgasduopnGanUNUaD

ssaudunyngasn

=T o |

W

}wﬁﬁm!

| W3

}awm‘n:mn’!

Wt

[Ruswewnjorssop |"
asnad

|
J

—
‘ C awnpoAps

'ti

ST

TN -

goTekesiarhaand

}lﬂ [T s

e gaTobbanSeraen

a/‘"’.!

ssaiduoynauasisEan|

usausssply |

Architecture - Group 3

Initially, we looked at the user requirements and from this, we developed a list of potential
classes and structures we would need in order to fulfil them. This included linking how
the user would interact with the system and how it would respond. For instance, the user
would use a keyboard’s controls (FR_COOK_CONTROLLER) to move the cooks and perform
the various actions. Additionally, they would have to use the mouse cursor to navigate the
menu. We made the assumption that most users would be familiar with the typical WASD
controls since the majority of games utilise these controls. We also accounted for the
closeness of keys, for instance the keys q, e, tab, and shift are quite accessible from the
standard position of the left hand on the keyboard. This would meet the
UR_CONTROL_SYSTEM, UR_UX user requirement and NFR_OPERABILITY non-functional
requirement..

Another consideration that was important to the architecture of our system was
similarities between functions. For instance, all stations would behave in a similar
manner with the player controlled cook being able to take and drop items when
appropriate from these stations. Similarly, connections were made between cooks,
customers and ingredients since all would require similar properties of a position,
texture, dimensions (width and height), and motion. Consequently, it would make sense
for likewise objects to inherit from a shared parent. We developed CRC cards to make this
clearer (See Figure 1).

One key functionality which would affect the overall feel to the game would be how
actions would be performed on stations and consequently ingredients. We decided that
the best course of action would be for all ingredients to have an internal ‘cookTime’ and
‘slices’ state which would then be updated if the ingredient was on the appropriate
station with the corresponding action being performed. This would meet the
FR_COOK_ACTIONS, FR_CUTTING, FR_FRYING functional requirements. Additionally, one
gameplay differentiation between the two would be that cooking wouldn’t need the cook
to be at the station, only there to initiate it, whereas if the user wanted the cook to cut,
they would have to lock them at that station. This made more sense since you could quite
easily leave something in a pan to cook while slicing is an action directly performed by a
person. Additionally, if the user had moved the cook(s) away from the station and for
some time, they’d be punished for leaving the ingredient(s) unattended.

In the case of the stations, each would have a number of slots, allowed ingredients, and
then appropriate methods to deal with entity interactions. This allowed for flexibility when
creating a new station and preventing the user mistakenly placing the wrong ingredient
on a station. When the customer arrives at the service station, the user would have to
guide one of the cooks to that station to get the order and only when it is placed on the
station will the customer leave.

As the project evolved over time, several changes from the initial design became
apparent. One such change was in the tutorial menu and the other screens (main menu,
pause menu). It felt more natural for the user to be guided through the game, to the exact
locations of the stations, when they first played instead of having the tutorial on just
another screen with different images. This lets the user understand where the locations
are without having to remember each location. Over time, the code in our MainGameClass
increased dramatically and it became apparent that we would have to separate certain

Architecture - Group 3

components and functionalities into different classes. This was especially the case when
separating the main game code from the menu and other Ul elements.

For creating recipes and menu items, a more modular system felt natural for our
implementation. This included individual classes for ingredients and recipes along with a
menu and list of ingredients to hold all final recipes (UR_RECIPES) and ingredients
respectively. Then, through a station class, we could specify which ingredients the station
takes or provides (depending on the type of station - UR_PANTRY_STATION,
UR_ITEM_STATION).

Statun, Caoohe Fryong Stalion.
Storey an Iny-ahn\t. Move omuad., Shn&u_s Fry /covk. T -
ingredint. i | ¢ ook wdernik Wik | Tngredink m?;’am. c:ﬁ
o Aot Cugtomer St held | o1pe (&g peminn)
alloury Cookdo and. dvop Customer
Srfasd, ad Uerna Conbrollar
dw”mavd.mt
Trgredians Reuipe, Boking Afalim.
Can Yoo frud, | Stofim Determne bhak 1nardu.,\t' -
tus ond/or | Covke, tngrediny) E:m{:;w Tngyredusat
il | ool | < Cery Touns) Come
‘e M:u.‘bmilf Costome ovdan. | Prep Shtis
C O'Y\.h'ouu" Meru QWN) Shakin
AUow wer | Covk Atk e s | Conkrroline T ;
o uml'\'b:,u‘r Merue do Qdqu falfinay, Man Game T mf‘
Corie 6nd. L eadesbomn, Pounc, Tosume. and Sl
Unverokehl, exits H guie, Custormer
v and. Viaw % dep
thawse. & Ragboni haderoundts Teape.
Maun Gome Tutertal I"U"M Shelian
Updolley and. Ted the Stodiniy .
rendan, newss- Mw*rph:r Conkrollar m ‘zl‘\- e Inendunr,
Covle,
any Ohoged, ¥ (irels wha | Comh e § Apeshi
ond- propertiny. doty whak. C].:\:;\Wr B L
e ol Rl s
Customer Prep Stalm Cuttiy Sl
Requuork ordar, | Cavk Aty tack to- | Trgeedusnt; Auay tark e | Tongrediant
quun ok it | Pape pregore ook | ol Cur an gpede|
Bk Aanni, | Serving Siaion tam imrelinl) ot <
ok oviar e recipe ope
Teady. ?num}.w..
L%Ju—baul‘.

Hold an Meun Game
orleed Wst | Controllu~

9 Yop Yo fo
Complate, pome.,

Figure 1.

Architecture - Group 3

For some of the user requirements, we developed a table below with a brief description on
how they would be implemented:

UR_SCENARIO_MODE Our customers will arrive one-by-one and the game will
finish when all have been served (currentWave >=
MAX_WAVE).

UR_CONTROL_SYSTEM A control class will contain boolean properties for every
action which will be true when the key is activated.

UR_ITEMS The cook will have a stack of held ingredients which can
be dropped and added to through station interactions.

UR_DEMANDS If the service station is interacted with by a customer, a
demand will be made (which is an instance of recipe).

UR_NUMBER_OF_CUSTO | There will be a global constant for the max number of
MERS customers (like a wave system).

UR_COOKS Two instances of the cook class shall be created and
rendered with a current cook being controlled directly.

UR_TOOLTIP When approaching an intractable station, the appropriate
key will be shown (e.g. ‘f’ to flip)..

UR_LEADERBORAD When the game has been finished, the time will be
uploaded to a leaderboard and sorted through that class.

